Triângulos Mapas Mentais – Matemática

Mapa Mental sobre Triângulos e Teorema de Pitágoras

Mapa mental sobre triângulos e o Teorema de Pitágoras, mostrando os principais elementos de um triângulo, como lados, ângulos, alturas, vértices, medianas, e bissetrizes. A imagem também destaca conceitos como ângulos internos e externos, com representações visuais de diferentes tipos de triângulos e segmentos.

Transcrição do Mapa Mental sobre Triângulos e Teorema de Pitágoras

Principais elementos:

  • Lados
  • Vértices
  • Ângulos
  • Alturas
  • Bissetrizes

Altura
Segmento de reta traçada a partir de um vértice de forma a encontrar o lado oposto ao vértice formando um ângulo reto.

Continue lendo…

Mediana
Segmento que une um vértice ao ponto médio do lado oposto.

Bissetriz
Semirreta que divide um ângulo em duas partes iguais.

Ângulo Interno
Formado por dois lados do triângulo. Todo triângulo possui três ângulos internos.

Ângulo Externo
Formado por um dos lados do triângulo e pelo prolongamento do lado adjacente.

Compartilhe:

Mapa Mental sobre Congruência de Triângulos: Casos e Demonstrações

Mapa mental explicando os casos de congruência de triângulos com exemplos geométricos

Transcrição do Mapa Mental sobre Congruência de Triângulos
Triângulos Congruentes
AB ≡ DE
BC ≡ EF
AC ≡ DF
É congruente (igual)
1º Caso (LAL)
2º Caso (ALA)
3º Caso (LAAng)
BC = EF
BC = EF ÂB = D̂
4º Caso (LLA)
5º Caso (HC)
Se algum desses casos acontecer, os dois triângulos são congruentes.

Continue lendo…

CASOS

Compartilhe:

Mapa Mental sobre Área do Triângulo: 5 Fórmulas Essenciais

Mapa mental apresentando 5 fórmulas diferentes para calcular a área de um triângulo

Transcrição do Mapa Mental sobre 5 EXPRESSÕES PARA A ÁREA DE UM TRIÂNGULO:

por base e altura
A = b.h/2
por dois lados e um ângulo
A = a.b.sen α/2
pelo semiperímetro
A = √p(p-a)(p-b)(p-c)
p = (a+b+c)/2
pelo raio r do círculo inscrito
A = p.r
pelo raio R do círculo circunscrito
A = a.b.c/4R

Continue lendo…

CASOS

Compartilhe:

Mapa Mental sobre Trigonometria: Relações em Triângulos Quaisquer

Mapa mental sobre relações trigonométricas em triângulos quaisquer, incluindo lei dos senos e cossenos

Transcrição do Mapa Mental sobre Relações Trigonométricas em um Triângulo Qualquer

As razões entre dois lados de um triângulo retângulo definem os números chamados seno, cosseno e tangente. Esses números estão associados a um dos ângulos agudos do triângulo, isto é, quando falamos do seno, do cosseno ou da tangente de um ângulo A, esse ângulo é um agudo em um triângulo retângulo.
Seno de um ângulo obtuso é o seno de seu suplemento ou senX= sen (180-x).
Cosseno de um ângulo obtuso é o posto do cosseno de seu suplemento ou cosX= -cos (180-x)
*O ângulo (resposta) sempre fica negativo.

Continue lendo…

LEI DOS COSSENOS
Vamos utilizar quando no triângulo tiver a medida de dois lados e um ângulo.
Fórmula:
a² = b² + c² – 2b.c.cos α
b² = a² + c² – 2a.c.cos β
c² = a² + b² – 2a.b.cos φ

LEI DOS SENOS
Vamos utilizar quando o triângulo tiver a medida de um lado e dois ou mais ângulos.
Fórmula:
a/senA = b/senB = c/senC

Compartilhe:

Compartilhe:

Deixe um comentário